close

標題:

A.Maths (Quadratic Equation)

發問:

Solver the problems: 1)Prove that (a^2+b^2)x^2+2(a+b)x+2=0 has no real roots if a and b are unequal 2)Prove that if a,b and c are real nos,then the equations (x-a)(x-b)=c^2 always has real roots.

最佳解答:

Δ= [ 2 ( a + b )]^2 - 4 ( a^2 + b^2 )( 2 ) = 4 ( a + b )^2 - 8a^2 - 8b^2 = 4a^2 + 8ab + 4b^2 - 8a^2 - 8b^2 = - 4a^2 + 8ab - 4b^2 = - 4 ( a^2 - 2ab + b^2 ) = - 4 ( a - b )^2 0 So the equation always has real roots. 2007-10-05 22:11:23 補充: Sorry for a typing error: the last line should be ( a - b )^2 + 4c^2 >= 0

免費註冊體驗

 

此文章來自奇摩知識+如有不便請留言告知

其他解答:

1)Prove that (a^2+b^2)x^2+2(a+b)x+2=0 has no real roots if a and b are unequal (a^2+b^2)x^2+2(a+b)x+2=0 delta = 4(a+b)^2 - 4(a^2+b^2)(2) = 4 [ (a+b)^2 - 2(a^2+b^2) ] = 4 [ a^2 + 2ab + b^2 - 2a^2 - 2b^2 ] = 4 [ -a^2 + 2ab - b^2] = -4 [ a^2 - 2ab + b^2] = -4 ( a - b)^2 = 0 so, (x-a)(x-b)=c^2 always has real roots 2007-10-05 21:54:43 補充: 大眼睇過龍, sorry, 第二條應該係delta = (a + b)^2 - 4( ab - c^2 )= (a + b)^2 - 4ab + 4 c^2= a^2 + 2ab + b^2 - 4ab + 4 c^2= a^2 - 2ab + b^2 + 4 c^2= (a - b)^2 + 4 c^2 >= 0so, (x-a)(x-b)=c^2 always has real roots上面位人兄都做錯少少, 請支持我一票, 唔該

arrow
arrow
    文章標籤
    文章 大眼 第二 奇摩
    全站熱搜
    創作者介紹
    創作者 gpjqem1 的頭像
    gpjqem1

    gpjqem1的部落格

    gpjqem1 發表在 痞客邦 留言(0) 人氣()